Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
World J Clin Cases ; 9(31): 9577-9583, 2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34877293

RESUMO

BACKGROUND: Hepatic encephalopathy (HE) is a frequent and debilitating complication of chronic liver disease. Recurrent HE is strongly linked with spontaneous portosystemic shunts (SPSSs). Intrahepatic arterioportal fistulas (IAPFs) occur rarely but pose a major clinical challenge and may lead to or worsen portal hypertension. Herein, we present a rare case of recurrent HE secondary to a SPSS combined with an IAPF. CASE SUMMARY: A 63-year-old female with primary biliary cirrhosis presented with recurrent disturbance of consciousness for 4 mo. SPSS communicating the superior mesenteric vein with the inferior vena cava and IAPF linking the intrahepatic artery with the portal vein were found on contrast-enhanced abdominal computed tomography. The patient did not respond well to medical treatment. Therefore, simultaneous embolization of SPSS and IAPF was scheduled. After embolization, the symptoms of HE showed obvious resolution. CONCLUSION: The presence of liver vascular disorders should not be neglected in patients with chronic liver disease, and interventional therapy is a reasonable choice in such patients.

2.
Chem Commun (Camb) ; 57(18): 2313-2316, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33533784

RESUMO

An efficient method to construct enantioenriched spiro[benzofuro-cyclopenta[1,2-b]indole-indoline] scaffolds via consecutive cyclization is described here. The new scaffolds possess five successive chiral stereogenic centers and two spiroheterocycles. A range of highly enantioenriched scaffolds has been obtained with up to 93% yield, 99% ee and >19 : 1 d.r. catalyzed by Brønsted acid catalysts.

3.
J Fluoresc ; 30(6): 1411-1419, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32930925

RESUMO

In this article, the characterization, synthesis, as well as the photocatalysis dye degradation performance of two novel silver(I) coordination polymers, namely, [Ag(L)(Hbdc)]n (1, L = 1,4-Bis(5,6-dimethylbenzimidazol-1-yl)butane, H2bdc = 1,4-Benzenedicarboxylic acid) and [Ag2(L)(hip)]n (2, H2hip = 5-Hydroxyisophthalic acid), were investigated. Fascinatingly, the photocatalytic performance of Complexes 1 and 2 have been investigated, wherein Complex 2 is considered an excellent photocatalyst for degrading Rhodamine B/methyl violet/methylene blue mixed organic dyes. Furthermore, the treatment activities of Complexes 1 and 2 on Tic disorder (TD) were assessed when used with haloperidol, and biochemical studies were conducted to reveal the mechanism in detail. Initially, the enzyme-linked immunosorbent assay was carried out to determine the dopamine and high vanillic acid contents in the striatum of the TD animal model. Subsequently, the reverse transcription-polymerase chain reaction was utilized to determine the relative expression of dopamine 1 and 2 receptor.


Assuntos
Complexos de Coordenação/química , Haloperidol/farmacologia , Neurotransmissores/metabolismo , Polímeros/química , Polímeros/farmacologia , Prata/química , Transtornos de Tique/tratamento farmacológico , Catálise , Criança , Sinergismo Farmacológico , Regulação da Expressão Gênica/efeitos dos fármacos , Haloperidol/uso terapêutico , Humanos , Processos Fotoquímicos , Receptores Dopaminérgicos/metabolismo , Transtornos de Tique/metabolismo
4.
Mol Med Rep ; 21(5): 2284, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32186766

RESUMO

Subsequently to the publication of this article, the authors have realized that the name of the first author was spelt incorrectly: The name was spelt as 'Hao­jing Wen', whereas the name should have been presented as 'Jing­wen Hao. The name as it should have appeared in the author list is featured above. The authors regret that this this error was not corrected prior to the publication of the above article, and apologize to the author in question and to the readership for any inconvenience caused.[the original article was published in Molecular Medicine Reports 19: 660­666, 2019; DOI:10.3892/mmr.2018.9633].

5.
AMB Express ; 10(1): 5, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31938890

RESUMO

Increasing evidences suggest that intestinal microbiota balance closely correlated with host's health status could affected by external environment. Integrated crayfish-rice cultivation model is a highly efficient artificial ecosystem widely practiced in subtropical China. Less information is available to estimate the influence response to the micro-ecology of crayfish intestine and so as to influence the biological processes. Thus, 16S rRNA high-throughput sequencing approach was employed to investigate the composition diversity and functions of bacterial community in the intestines of Procambarus clarkii farmed within this model. Results exhibited the highly diversity of microflora with dominant phyla Actinobacteria, Proteobacteria, Tenericutes, Firmicutes and Bacteroidetes. The genera of Candidatus Bacilloplasma and Ornithinibacter were presented as predominant population much exceeds in richness comparing to that of other genus. Despite the highly diversity in the bacterial community, the predicted functions indicated relative consistent in biological processing pathway. Collectively, significant richness of genes was observed involved in amino acid and carbohydrate metabolism and membrane transport processing. This study would contribute to the understanding of the impact of growth conditions on host-microbiota relation especially in aquatic animals.

6.
Cancers (Basel) ; 11(11)2019 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-31744046

RESUMO

As a highly heterogeneous malignancy, breast cancer (BC) has become the most significant threat to female health. Distant metastasis and therapy resistance of BC are responsible for most of the cases of mortality and recurrence. Distant metastasis relies on an array of processes, such as cell proliferation, epithelial-to-mesenchymal transition (EMT), mesenchymal-to-epithelial transition (MET), and angiogenesis. Long non-coding RNA (lncRNA) refers to a class of non-coding RNA with a length of over 200 nucleotides. Currently, a rising number of studies have managed to investigate the association between BC and lncRNA. In this study, we summarized how lncRNA has dual effects in BC metastasis by regulating invasion, migration, and distant metastasis of BC cells. We also emphasize that lncRNA has crucial regulatory effects in the stemness and angiogenesis of BC. Clinically, some lncRNAs can regulate chemotherapy sensitivity in BC patients and may function as novel biomarkers to diagnose or predict prognosis for BC patients. The exact impact on clinical relevance deserves further study. This review can be an approach to understanding the dual effects of lncRNAs in BC, thereby linking lncRNAs to quasi-personalized treatment in the future.

7.
Biochem Biophys Res Commun ; 517(3): 458-462, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31376940

RESUMO

Cyclin B is a ubiquitous regulatory molecule and has been implicated in mitosis and meiosis in oocytes. Phenomenon that differ in the length of cyclin B 3'UTR in crustacean has attracted much attention, although molecular details are poorly understood. The study of 3'UTR-interacting proteins could yield much information in translational regulation and the mRNA localization process. Previous studies on crayfish suggested that the 3'UTR (1300 bp) probably contains the potential regulatory sequence/motifs such as CPEs and K-box et al. In present study, using pull-down assay coupled with mass spectrometry approach allowing us to explore the potential proteins associated with the 3'UTR. We finally identified four candidate proteins including Hspg 2, Vtg, eef1a and Tuba1a, which annotated as significant roles involved in cell differentiation, lipid transporter activity, and meiotic cell cycle process. The preliminary results will contribute to the advance in understanding the translational activation of cyclin B in oocyte maturation regulation in crustacean.


Assuntos
Regiões 3' não Traduzidas , Proteínas de Artrópodes/genética , Astacoidea/genética , Ciclina B/genética , Regulação da Expressão Gênica no Desenvolvimento , Oócitos/metabolismo , Animais , Proteínas de Artrópodes/metabolismo , Astacoidea/citologia , Astacoidea/crescimento & desenvolvimento , Astacoidea/metabolismo , Transporte Biológico , Ciclina B/metabolismo , Feminino , Proteoglicanas de Heparan Sulfato/genética , Proteoglicanas de Heparan Sulfato/metabolismo , Meiose , Oócitos/citologia , Oócitos/crescimento & desenvolvimento , Oogênese/genética , Fator 1 de Elongação de Peptídeos/genética , Fator 1 de Elongação de Peptídeos/metabolismo , Ligação Proteica , Biossíntese de Proteínas , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Vitelogeninas/genética , Vitelogeninas/metabolismo
8.
Org Lett ; 21(14): 5438-5442, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31267756

RESUMO

Imidodiphosphoric acids were employed to catalyze inverse-electron-demand hetero-Diels-Alder reaction of ß,γ-unsaturated α-ketoesters and 3-vinylindoles. A series of optically active 3,4-dihydro-2H-pyran derivatives with three contiguous stereogenic centers was synthesized in excellent yields (70-99%), diastereoselectivities (>20:1), and enantioselectivities (73-99%). The resulting indole containing 3,4-dihydro-2H-pyran could be converted to tetrahydropyran derivatives, which appear in several biological active compounds by simple hydrogenation reduction.

9.
Mol Med Rep ; 19(1): 660-666, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30431094

RESUMO

A high level of oxidized low­density lipoproteins (oxLDLs) is an independent risk factor for cardiovascular disease. The aim of the present study was to investigate whether insulin­like growth factor­1 (IGF­1) protected endothelial progenitor cells (EPCs) from injury caused by ox­LDLs, and whether the endothelial nitric oxide synthase (eNOS)/nitric oxide (NO) pathway was involved in this process. EPCs were isolated from human peripheral blood and characterized. In order to evaluate the effect of IGF­1 on EPCs, cells were incubated with ox­LDLs (100 mg/ml) for 24 h to induce a model of EPC dysfunction in vitro, which demonstrated a decrease in the number of EPCs, concomitant with increased apoptosis and decreased proliferation rates. IGF­1 dose­dependently increased the number of EPCs. Concurrently, IGF­1 decreased the levels of apoptosis of EPCs and improved EPCs proliferation following ox­LDLs challenge. In addition, IGF­1 significantly increased NO levels in ox­LDLs­treated EPCs, accompanied by an upregulation in eNOS expression. The protective effects of IGF­1 on EPCs and NO production were abolished by L­NAME, a specific eNOS inhibitor. These results suggested that IGF­1 protects EPCs from dysfunction induced by oxLDLs through a mechanism involving the eNOS/NO pathway.


Assuntos
Apoptose/efeitos dos fármacos , Células Progenitoras Endoteliais/citologia , Fator de Crescimento Insulin-Like I/farmacologia , Lipoproteínas LDL/efeitos adversos , Óxido Nítrico Sintase Tipo III/metabolismo , Substâncias Protetoras/farmacologia , Adolescente , Adulto , Adesão Celular , Movimento Celular , Proliferação de Células , Células Cultivadas , Células Progenitoras Endoteliais/efeitos dos fármacos , Células Progenitoras Endoteliais/metabolismo , Feminino , Humanos , Masculino , Óxido Nítrico/metabolismo , Adulto Jovem
10.
Plant Cell Environ ; 41(1): 176-186, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28963730

RESUMO

Volatile terpenoids produced in tea plants (Camellia sinensis) are airborne signals interacting against other ecosystem members, but also pleasant odorants of tea products. Transcription regulation (including transcript processing) is pivotal for plant volatile terpenoid production. In this study, a terpene synthase gene CsLIS/NES was recovered from tea plants (C. sinensis cv. "Long-Men Xiang"). CsLIS/NES transcription regulation resulted in 2 splicing forms: CsLIS/NES-1 and CsLIS/NES-2 lacking a 305 bp-fragment at N-terminus, both producing (E)-nerolidol and linalool in vitro. Transgenic tobacco studies and a gene-specific antisense oligo-deoxynucleotide suppression applied in tea leaves indicated that CsLIS/NES-1, localized in chloroplasts, acted as linalool synthase, whereas CsLIS/NES-2 localized in cytosol, functioned as a potential nerolidol synthase, but not linalool synthase. Expression patterns of the 2 transcript isoforms in tea were distinctly different and responded differentially to the application of stress signal molecule methyl jasmonate. Leaf expression of CsLIS/NES-1, but not CsLIS/NES-2, was significantly induced by methyl jasmonate. Our data indicated that distinct transcript splicing regulation patterns, together with subcellular compartmentation of CsLIS/NE-1 and CsLIS/NE-2 implemented the linalool biosynthesis regulation in tea plants in responding to endogenous and exogenous regulatory factors.


Assuntos
Camellia sinensis/genética , Monoterpenos/metabolismo , Proteínas de Plantas/metabolismo , Splicing de RNA/genética , Acetatos/farmacologia , Monoterpenos Acíclicos , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Sequência de Bases , Camellia sinensis/efeitos dos fármacos , Camellia sinensis/metabolismo , Ciclopentanos/farmacologia , Flores/efeitos dos fármacos , Flores/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oxilipinas/farmacologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Splicing de RNA/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sesquiterpenos/metabolismo , Frações Subcelulares/metabolismo , Terpenos/metabolismo , /genética
11.
Sci Rep ; 7: 45062, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28332598

RESUMO

In this study, shade-induced conversion from a young pale/yellow leaf phenotype to a green leaf phenotype was studied using metabolic and transcriptomic profiling and the albino cultivar 'Yu-Jin-Xiang' ('YJX') of Camellia sinensis for a better understanding of mechanisms underlying the phenotype shift and the altered catechin and theanine production. Shaded leaf greening resulted from an increase in leaf chlorophyll and carotenoid abundance and chloroplast development. A total of 1,196 differentially expressed genes (DEGs) were identified between the 'YJX' pale and shaded green leaves, and these DEGs affected 'chloroplast organization' and 'response to high light' besides many other biological processes and pathways. Metabolic flux redirection and transcriptomic reprogramming were found in flavonoid and carotenoid pathways of the 'YJX' pale leaves and shaded green leaves to different extents compared to the green cultivar 'Shu-Cha-Zao'. Enhanced production of the antioxidant quercetin rather than catechin biosynthesis was correlated positively with the enhanced transcription of FLAVONOL SYNTHASE and FLAVANONE/FLAVONOL HYDROXYLASES leading to quercetin accumulation and negatively correlated to suppressed LEUCOANTHOCYANIDIN REDUCTASE, ANTHOCYANIDIN REDUCTASE and SYNTHASE leading to catechin biosynthesis. The altered levels of quercetin and catechins in 'YJX' will impact on its tea flavor and health benefits.


Assuntos
Camellia sinensis/genética , Camellia sinensis/metabolismo , Catequina/biossíntese , Metabolismo Energético/genética , Transcriptoma , Camellia sinensis/ultraestrutura , Reprogramação Celular , Cloroplastos/genética , Cloroplastos/metabolismo , Cloroplastos/ultraestrutura , Biologia Computacional/métodos , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas , Glutamatos/biossíntese , Redes e Vias Metabólicas , Anotação de Sequência Molecular , Fenótipo , Pigmentação , Folhas de Planta , Reprodutibilidade dos Testes
12.
Data Brief ; 10: 492-498, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28054014

RESUMO

This paper presents data related to an article entitled "Green tea flavor determinants and their changes over manufacturing processes" (Han et al., 2016) [1]. Green tea samples were prepared with steaming and pan firing treatments from the tender leaves of tea cultivars 'Bai-Sang Cha' ('BAS') and 'Fuding-Dabai Cha' ('FUD'). Aroma compounds from the tea infusions were detected and quantified using HS-SPME coupled with GC/MS. Sensory evaluation was also made for characteristic tea flavor. The data shows the abundances of the detected aroma compounds, their threshold values and odor characteristics in the two differently processed tea samples as well as two different cultivars.

13.
Food Chem ; 212: 739-48, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27374591

RESUMO

Flavour determinants in tea infusions and their changes during manufacturing processes were studied using Camellia sinensis cultivars 'Bai-Sang Cha' ('BAS') possessing significant floral scents and 'Fuding-Dabai Cha' ('FUD') with common green tea odour. Metabolite profiling based on odour activity threshold revealed that 'BAS' contained higher levels of the active odorants ß-ionone, linalool and its two oxides, geraniol, epoxylinalool, decanal and taste determinant catechins than 'FUD' (p<0.05). Enhanced transcription of some terpenoid and catechin biosynthetic genes in 'BAS' suggested genetically enhanced production of those flavour compounds. Due to manufacturing processes, the levels of linalool and geraniol decreased whereas those of ß-ionone, linalool oxides, indole and cis-jasmone increased. Compared with pan-fire treatment, steam treatment reduced the levels of catechins and proportion of geraniol, linalool and its derivatives, consequently, reducing catechin-related astringency and monoterpenol-related floral scent. Our study suggests that flavour determinant targeted modulation could be made through genotype and manufacturing improvements.


Assuntos
Camellia sinensis/química , Catequina/metabolismo , Aromatizantes/química , Monoterpenos/metabolismo , Odorantes/análise , Extratos Vegetais/química , Chá/química , Monoterpenos Acíclicos , Química Farmacêutica , Paladar
14.
Int J Mol Sci ; 17(7)2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-27428960

RESUMO

Tea (Camellia sinensis L.) is recalcitrant to Agrobacterium-mediated genetic transformation largely due to the bactericidal effects of tea polyphenols and phenolics oxidation induced by necrosis of explant tissue over the process of transformation. In this study, different antioxidants/adsorbents were added as supplements to the co-cultivation and post co-cultivation media to overcome these problems for the transformation improvement. Tea-cotyledon-derived calli were used as explants and Agrobacterium rhizognes strain ATCC 15834 was used as a mediator. Results showed that Agrobacterium growth, virulence (vir) gene expression and browning of explant tissue were greatly influenced by different supplements. Murashige and Skoog (MS) basal salts medium supplemented with 30 g·L(-1) sucrose, 0.1 g·L(-1) l-glutamine and 5 g·L(-1) polyvinylpolypyrrolidone (PVPP) as co-cultivation and post co-cultivation media could maintain these parameters better that ultimately led to significant improvement of hairy root generation efficiency compared to that in the control (MS + 30 g·L(-1) sucrose). Additionally, the reporter genes ß-glucuronidase (gusA) and cyan fluorescent protein (cfp) were also stably expressed in the transgenic hairy roots. Our study would be helpful in establishing a feasible approach for tea biological studies and genetic improvement of tea varieties.


Assuntos
Agrobacterium/crescimento & desenvolvimento , Antioxidantes/farmacologia , Camellia sinensis/genética , Meios de Cultivo Condicionados/farmacologia , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Agrobacterium/efeitos dos fármacos , Agrobacterium/genética , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/efeitos dos fármacos , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Reação em Cadeia da Polimerase , Transformação Genética
15.
Angew Chem Int Ed Engl ; 55(7): 2411-5, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26663528

RESUMO

To understand the behavior of chiral nanostructures, it is of critical importance to study how achiral molecules regulate the chirality of such nanostructures and what the main driving forces for the regulation processes are. In this work, the supramolecular chirality of helical nanofibers consisting of phenylalanine-based enantiomers is inverted by achiral bis(pyridinyl) derivatives through co-assembly. This inversion is mainly mediated by intermolecular hydrogen bonding interactions between the achiral additives and the chiral molecules, which may induce stereoselective interactions and different reorientations for the assembled molecules, as confirmed by calculations. This work not only exemplifies a feasible method to invert the helicity of chiral nanostructures by the addition of achiral molecules, but also provides a method to explore their functions in environments where chiral and achiral molecules are in close proximity.

16.
Huan Jing Ke Xue ; 36(8): 2887-94, 2015 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-26592017

RESUMO

The response of chlorophyll and photosynthesis of water hyacinth leaves in different concentrations of clustered algae cells was studied in the simulation experiment, and the aim was to reveal the mechanism of the death of aquatic plants during algae blooms occurred through studying the physiological changes of the macrophytes, so as to play the full function of the ecological restoration of the plants. And results showed the dissolved oxygen quickly consumed in root zone of aquatic plants after algae blooms gathered and showed the lack of oxygen (DO < 0.2 g x L(-1)); and the ORP was lower than -100 mV after 1 d, and it declined to -200 mV at the end of the experiment. There were lots of nutrients releasing to the water after the algae cell died and concentration of DTN in treatment 1 and 2 were 44.49 mg x L(-1) and 111.32 mg x L(-1), and the content of DTP were 2.57 mg x L(-1) and 9.10 mg x L(-1), respectively. The NH4+ -N concentrations were as high as 32.99 mg x L(-1) and 51.22 mg x L(-1), and the root zone with the anoxia, strong reducing, higher nutrients environment had a serious stress effects to the aquatic plants. The macrophytes photosynthesis reduced quickly and the plant body damaged with the intimidation of higher NH4+ -N concentration (average content was 45.6 mg x L(-1)) and hypoxia after algae cell decomposed. The average net photosynthesis rate, leaf transpiration rate of the treatment 2 reduced to 3.95 micromol (M2 x S)(-1), 0.088 micromol x (m2 x s)(-1), and only were 0.18 times, 0.11 times of the control group, respectively, at the end of the experiment, the control group were 22 micromol x (m2 x s)(-1), 0.78 micromol x (M2 x s)(-1). Results indicated the algae bloom together had the irreversible damage to the aquatic plants. Also it was found large amounts of new roots and the old roots were dead in the treatment 1, but roots were all died in the treatment 2, and leaves were yellow and withered. Experiment results manifested that the serious environment caused by the algae blooms together was the main reason of the death of aquatic plants during the summer. So in the practice of ecological restoration, it should avoid the harm to the plant after the algae bloom cells gathered and decomposed, so as to play the purification function of the plant in the ecological rehabilitation project.


Assuntos
Clorofila/análise , Eichhornia/fisiologia , Eutrofização , Fotossíntese , Recuperação e Remediação Ambiental , Água Doce , Oxigênio/análise , Folhas de Planta/fisiologia
17.
Huan Jing Ke Xue ; 36(6): 2070-6, 2015 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-26387309

RESUMO

It is an efficient and effective ecological restoration method by using the adaptability, large biomass of aquatic plants to purify the polluted water at present. However, there is a lack of systematic research on the impact on the physiological ecology of aquatic plants and its environmental effects of algae blooms cluster in summer. The aim of this paper is to reveal the mechanism of macrophytes demise in a shallow ecosystem by studying the influence on photosynthesis of water hyacinth caused by the cynaobacterial blooms gathered, and also to provide the theoretical basis for full effects of purification function of macrophytes to reduce the negative effects on the aquatic plants after algae blooms gathered during the higher temperature (not lower 25 degrees C) through simulating experiments. Results showed the dissolved oxygen quickly consumed in root zone of aquatic plants after algae blooms gathered and showed a lack of oxygen (DO < 0.2 mg x L(-1)); and the ORP was lower than -100 mV after 1 d, and it declined to -200 mV at the end of the experiment, and pH declined 0. 7unit compared with that of control group ( CK). There were lots of nutrients releasing to the water after the algae cell died and the NH4+ -N concentration was 102 times higher than that of the control group root zone. And the macrophytes photosynthesis reduced quickly and the plant body damaged with the intimidation of higher NH4+ -N concentration (average content was 45.6 mg x L(-1)) and hypoxia after algae cell decomposed. The average net photosynthesis rate, leaf transpiration rate were 0.6 times, 0.55 times of the control group, and they reduced to 3.96 micromol x (m2 x s)(-1), 1.38 mmol x (m2 x s)(-1), respectively. At the end of the experiment, they were 22.0 micromol x (m2 x s)(-1) and 7.61 mmol x (m2 x s)(-1) for the control group. Results also showed the algae bloom together had the irreversible damage to the aquatic plants. So in the practice of ecological restoration, it should avoid the harm to the plant after the algae bloom cells gathered and decomposed so as to play the purification function of the plant in the ecological rehabilitation project.


Assuntos
Eichhornia/fisiologia , Eutrofização , Fotossíntese , Biomassa , Ecossistema , Oxigênio/química , Folhas de Planta/fisiologia , Transpiração Vegetal , Estações do Ano , Água/química , Poluição da Água
18.
Ying Yong Sheng Tai Xue Bao ; 26(4): 1205-14, 2015 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-26259465

RESUMO

The potential of biological soil disinfestation (BSD) in control of continuous potato monoculture barrier was investigated in present study. BSD involves the induction of soil reduction conditions through incorporation of easily decomposed organic materials into soil, flooding the soil by irrigation, and covering the soil surface with plastic film. Control (CK) was left without cover and organic amendment as well as flooding. Field experiment was conducted for testing the effect of BSD approach on the control of continuous potato monoculture barrier, especially on tube yield, plant growth and development, suppression of soil-borne pathogen, and soil microbial community and enzyme activities. Compared with CK, BSD treatment significantly increased tuber yield by 16.1% and plant biomass by 30.8%, respectively. Meanwhile, the incidence of diseased plant and the ratio of diseased tuber in BSD treatment also significantly decreased by 68.0% and 46.7% as compared to those in CK, respectively. BSD treatment significantly increased the content of chlorophyll and branch numbers per main stem of potato plants, improved the morphological characteristics of potato root system. In the course of BSD before potato sowing, soil pH value and bacteria/fungi significantly increased, but populations of fungi and Fusarium sp. significantly decreased compared with CK. There were no significant changes in populations of bacteria and actinomycetes between CK and BSD treatments. During potato growing stage, the populations of both soil fungi and Fusarium sp. were lower in BSD treatment than those of CK. With the advance of potato growth, the population of Fusarium sp. in BSD treatment gradually increased compared with CK. There were no significant changes in soil enzyme activities in the course of BSD before potato sowing and the whole of potato growing stage. It was concluded that BSD has the potential to control continuous potato monoculture barrier and may be an important element in a sustainable and effective management strategy for potato soil-borne diseases.


Assuntos
Agricultura/métodos , Doenças das Plantas/prevenção & controle , Microbiologia do Solo , Solanum tuberosum/crescimento & desenvolvimento , Irrigação Agrícola , Bactérias , Biomassa , China , Inundações , Fungos , Raízes de Plantas , Caules de Planta , Solo
19.
Langmuir ; 31(25): 7122-8, 2015 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-26061452

RESUMO

Recently, logic gates based on multiresponsive hydrogel systems are attractive because of their potential biological applications. A quite simple supramolecular hydrogel co-assembled from phenylalanine-based amphiphile (LPF2) and bis(pyridinyl) derivative (AP) is constructed. The co-assembled hydrogel exhibited a macroscopic gel-sol transition in response to four distinct input stimuli: temperature, acid, base, and light. A set of techniques including microscopic, spectroscopic, and rheological measurements demonstrate this performance and confirm that the hydrogel is formed through intermolecular hydrogen bonds between amide/pyridine moieties and carbonyl groups. On the basis of its mutiple-stimulus responsiveness, installing gel-based supramolecular logic gates (OR and XOR) is achieved. It may promote the possibility to develop smart soft materials, such as gels, that can be used as tools releasing a drug quantitatively by rational design and fine control of the external stimuli.

20.
Huan Jing Ke Xue ; 36(1): 114-20, 2015 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-25898654

RESUMO

Blue-green algae bloom will consume plenty of dissolved oxygen in water, which affects the growth of aquatic plants. The effects of water hyacinth growth and physiological response changes under 25 degrees C, 5 different concentrations of cyanobacteria gathered were studied and which would provide a theoretical basis to mitigate adverse impacts and improve water purification effect. The results showed that water quality indexes including dissolved oxygen (DO), pH dropped in algae density below 60 g x L(-1), with the increase of algae density. And the level of oxidation-reduction potential dropped to about 100 mV. The removal rates of TN, TP and COD were 58%-78%, 43%-68% and 59%-73%, leaf soluble protein, soluble sugar, MDA contents increased, respectively; and the MDA content became higher with the increase of algae density. It indicated that the water hyacinth could adapt to the adversity condition as algae density less than 60 g x L(-1). While algae density above 60 g x L(-1), water quality indexes significantly decreased, respectively and the water was in hypoxia or anoxia conditions. Plant leaves soluble sugar contents had a change trend of low-high-low. It indicated that the removal rates of TN, TP decreased with the increase of algae density and water hyacinth had irreversible stress. Plant root length, total length, fresh weight in different treatments, increased compared with the beginning of the experiment, the increase of root length, total length and fresh weight were 0.29-2.44 times, 0.41-0.76 times and 0.9-1.43 times. The increase of root length, total length decreased with the increase of algae density. According to the results, the cyanobacteria should avoid of excessive accumulation as using the floating plant to purify the water.


Assuntos
Eichhornia/fisiologia , Eutrofização , Água Doce/química , Cianobactérias , Purificação da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...